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Abstract
Microbiome-based stratification of healthy individuals into compositional categories,

referred to as “enterotypes” or “community types”, holds promise for drastically improving

personalized medicine. Despite this potential, the existence of community types and the

degree of their distinctness have been highly debated. Here we adopted a dynamic systems

approach and found that heterogeneity in the interspecific interactions or the presence of

strongly interacting species is sufficient to explain community types, independent of the

topology of the underlying ecological network. By controlling the presence or absence of

these strongly interacting species we can steer the microbial ecosystem to any desired

community type. This open-loop control strategy still holds even when the community types

are not distinct but appear as dense regions within a continuous gradient. This finding can

be used to develop viable therapeutic strategies for shifting the microbial composition to a

healthy configuration.

Author Summary

We coexist with a vast number of microbes that live in and on our bodies, and play impor-
tant roles in physiology and disease. Two interesting phenomena have been observed in
the human microbiome. The first is the stratification of healthy individuals based on the
relative abundances of their microbes, which holds promise for drastically improving per-
sonalized medicine. The second is the astounding success of fecal microbial transplanta-
tion in treating certain diseases related to disordered microbiomes. Surprisingly, both
phenomena have not been analytically or quantitatively understood, despite a few early
qualitative attempts. This work shows that through a dynamic systems and control theo-
retical approach the success of fecal microbial transplantation can be explained and that
the microbiome-based stratification can be as simple as the existence of strongly interact-
ing species.
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Introduction
Rather than simple passengers in and on our bodies, commensal microorganisms have been
shown to play key roles in our physiology and in the evolution of several chronic diseases [1,
2]. Many scientific advances have been made through the work of large-scale, consortium-
driven metagenomic projects, such as theMetagenomics of the Human Intestinal Tract (Meta-
HIT) [3] and the Human Microbiome Project (HMP) [4, 5]. In particular, the HMP has ana-
lyzed the largest cohort and set of distinct, clinically relevant body habitats to date, in order to
characterize the ecology of human-associated microbial communities [4]. These results thus
delineate the range of structural and functional configurations normal in the microbial com-
munities of a healthy population, enabling future characterization of the translational applica-
tions of the human microbiome.

A recent study proposed that a healthy gut microbiome falls within one of three distinct
community types, which the authors coined as “enterotypes” [6]. More specifically, the authors
calculated the relative abundance profiles of microbiota at the genus level and then performed
standard cluster analysis, finding three distinct clusters (enterotypes). Each enterotype is a
dominated by a particular genus (Bacteroides, Prevotella, or Ruminococcus) but not affected by
gender, age, body mass index, or nationality of the host. These results suggest that enterotyping
could be an efficient way to stratify healthy human individuals. The development of personal-
ized microbiome-based therapies would then simplify to shifting an unhealthy microbiome to
one of the distinct healthy configurations.

A meta-analysis, however, suggested that enterotypes, or in general community types, could
be an artifact of the small sample size in [6] and what one should expect is a continuous gradi-
ent with dense regions rather than distinct clusters [7]. The level of discreteness or continuity
of the community types remains unclear. Interestingly, samples in the dense regions of this gra-
dient are either highly abundant or deficient in Bacteroides[7], indicating that community
types could still emerge as the dense regions within a continuous gradient. Indeed, some recent
work actually supports the notion of distinct community types [8–12].

We still lack consensus on the nature and origins of community types [13–17]. In principle
the presence of community types could be explained by several different mechanisms. For
instance, there may be true multi-stability, i.e. multiple stable states with the same set of micro-
bial species present in the same environment [18]. Although this type of multi-stability has been
well discussed in macro-ecological systems [19], its detection in host-associated microbial com-
munities is rather difficult and has not been demonstrated experimentally [15]. Host heterogene-
ity is another possible mechanism, leading to host-specific microbial dynamics (parameterized
by host-specific intra- and inter-species interactions). If those interactions, which serve as param-
eters of the host-associated microbial ecosystems, can be classified into distinct groups, then we
can numerically demonstrate that distinct community types will naturally emerge (S1 Text Sec.
6.2 and 7.1). However, the presence of classifiable microbial dynamics has not been experimen-
tally detected. Moreover, the overwhelming success of Fecal Microbiota Transplantation (FMT)
in treating recurrent Clostridium Difficile Infection (rCDI) suggests that host heterogeneity is
likely playing a minor role in terms of its effect on intra- and inter-species interactions [20–22].

Here we proposed a simple mechanism, without assuming multi-stability or host heteroge-
neity, to explain the origins of community types. In particular, using a dynamic systems
approach, we studied compositional shift as a function of species collection and demonstrated
that with heterogeneous interspecific interactions, a phenomenon often observed in macroe-
cology [23–25], community types can naturally emerge. Interestingly, this result is independent
of the topology of the underlying ecological network. To our knowledge, this is the first
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quantitative attempt to explore the analytical basis of community types. Furthermore, commu-
nity types, even when they weakly exist, can be manipulated efficiently by controlling the
Strongly Interacting Species (SISs) only. This provides theoretical justification for translational
applications of the human microbiome. Note that in this paper we use the term species in the
general context of ecology, i.e. a set of organisms adapted to a particular set of resources in the
environment, rather than the lowest taxonomic rank. One could think of organizing microbes
by genus or operational taxonomical units as well.

Dynamic Model
The human microbiome is a complex and dynamic ecosystem [26]. When modeling a dynamic
system we should first decide how complex the model needs to be so as to capture the phenom-
enon of interest. A detailed model of the intestinal microbiome would include mechanistic
interactions among cells, spatial structure of the human intestinal tract, as well as host-micro-
biome interactions [27–30]. That level of detail however is not necessary for this study, because
we are primarily interested in exploring the impact that any given species has on the abundance
of other species. To achieve that, a population dynamics model such as the canonical General-
ized Lotka-Volterra (GLV) model is sufficient [15, 31]. Indeed, GLV dynamics leveraging cur-
rent metagenome data has already been used for predictive modeling of the intestinal
microbiota [32–34]. Consider a collection of n species in a habitat with the population of spe-
cies i at time t denoted as xi(t). The GLV model assumes that the species populations follow a
set of ordinary differential equations

_xiðtÞ ¼ rixiðtÞ þ xiðtÞ
Xn

j¼1

aij xjðtÞ; i ¼ 1; . . . ; n ð1Þ

where ð � Þ ¼ d
dt
ð Þ. Here ri is the growth rate of species i, aij (when i 6¼ j) accounts for the

impact that species j has on the population change of species i, and the terms aiix
2
i are adopted

from Verhulst’s logistic growth model [35]. By collecting the individual populations xi(t) into a
state vector x(t) = [x1(t), � � �, xn(t)]T, Eq (1) can be represented in the compact form

_xðtÞ ¼ diagðxðtÞÞ r þ AxðtÞð Þ; ð2Þ
where r = [r1, � � �, rn]T is a column vector of the growth rates, A = (aij) is the interspecific inter-
action matrix, and diag generates a diagonal matrix from a vector. Hereafter we drop the
explicit time dependence of x.

Next we discuss the notion of fixed point, or equivalently steady state, in the GLV dynamics.
This notion is important in the context of the human microbiome, as the measurements taken
of the relative abundance of intestinal microbiota in the aforementioned studies typically repre-
sent steady behavior [4, 6]. In other words, the intestinal microbiota is a relatively resilient eco-
system [36, 37], and until the next large perturbation (e.g. antibiotic administration or
dramatic change in diet) is introduced, the system remains stable for months and possibly even
years [38–40]. The fixed points of system Eq (2) are those solutions x that satisfy _x ¼ 0. The
solution x = 0 (i.e. all species have zero abundance) is a trivial steady state. The set of non-trivial
steady states contains those solutions x� such that r + Ax� = 0. When the matrix A is invertible,
it follows that the non-trivial steady state x� = −A−1 r is unique [41].

Our study ultimately investigated the impact that different collections of microbial species
have on their steady state abundances. In Fig 1 we presented a detailed analysis showing that if
we introduce a new species into the ecosystem in Eq (2), the shift of the steady state is propor-
tional to the interaction strengths between the newly introduced species and the previously
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Fig 1. Steady state shift in the generalized Lotka-Volterra model.

doi:10.1371/journal.pcbi.1004688.g001
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existing ones. Similarly, if two communities with the same dynamics differ by only one species,
then it is the interaction strength of that species with regard to the rest of the community that
dictates how far apart the steady states of the two communities will be. This analytical result
indicates that heterogeneity of interspecific interactions could lead to the clustering of steady
states, and hence the emergence of community types.

To systematically investigate how changes in species collection affect the steady state shift in
the GLV dynamics, we assumed that two microbial species will interact in the same fashion
regardless of the host. Otherwise, if the interactions are host specific and the dynamics are clas-
sifiable, we can show that distinct community types will emerge almost trivially (S1 Text Sec.
6.2 and 7.1).

Metacommunity and Local Communities
Consider a universal species pool, also referred to as a metacommunity [42], indexed by a set
of integers S = {1, . . ., n}, an n × nmatrix A representing all possible pairwise interactions
between species, and a vector r of size n containing the growth rates for all the n species. The
global parameters for the metacommunity are completely defined by the triple (S, A, r). We
consider q Local Communities (LCs), defined by sets S[ν] that are subsets of S, denoting the spe-
cies present in LCν with ν = 1, . . ., q. This modeling procedure is inspired by the fact that alter-
native community assembly scenarios could give rise to the compositional variations observed
in the human microbiome [42]. These LCs represent microbial communities in the same body
site across different subjects. For simplicity, we assume that each LC contains only p species
(p� n), randomly selected from the metacommunity.

The GLV dynamics for each LC is given by

LCn : _x ½n�ðtÞ ¼ diag x½n�ðtÞð Þ r½n� þ A½n�x½n�ðtÞð Þ; ð3Þ

where the LC specific interaction matrix and growth vector are defined as A½n� ¼ AS½n� ;S½n� and

r½n� ¼ rS½n� , respectively. That is, A
[ν] is obtained from A by only taking the rows and columns of

A that are contained in the set S[ν]. A similar procedure is performed in order to obtain r[ν].
Finally for each x[ν] there is a corresponding x½n� 2 R

n that has the abundances for species S[ν]

of LCν in the context of the metacommunity species pool S.
To reveal the origins of community types in the human microbiome, we decomposed the

universal interaction matrix as

A ¼ NH ◦Gs; ð4Þ
which contains four components. (i)N 2 R

n�n is the nominal interspecific interaction matrix
where each element is sampled from a normal distribution with mean 0 and variance σ2, i.e.
½N�ij � N ð0; s2Þ. (ii)H 2 R

n�n is a diagonal matrix that captures the overall interaction

strength heterogeneity of different species. When studying the impact of interaction strength
heterogeneity the diagonal elements ofH will be drawn from a power-law distribution with
exponent −α, i.e. ½H�ii � PðaÞ, which are subsequently normalized so that the mean of the
diagonal elements is equal to 1. This is to ensure that the average interaction strength is
bounded. For studies that do not involve interaction strength heterogeneityH is simply the
identity matrix. (iii)G 2 R

n�n is the adjacency matrix of the underlying ecological network:
[G]ij = 1 if species i is affected by the presence of species j and 0 otherwise. For details on the
construction of G for different network topologies see S1 Text Sec. 3.2.2. Note that theHada-
mard product (◦) betweenH and G represents element-wise matrix multiplication. (iv) The last
component s is simply a scaling factor between 0 and 1. Finally, we set [A]ii = −1. The presence
of the scaling factor s and setting the diagonal elements of A to −1 are to ensure an asymptotic
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stability condition for the GLV dynamics (S1 Text Sec. 4.2, 4.3.3, and 4.5). The elements in the
global growth rate vector r are taken from the uniform distribution, ½r�i � Uð0; 1Þ. Details con-
cerning the distributionN , P and U can be found in S1 Text Sec. 3.1.1.

Origins of Community Types
We first studied the role of interspecific interaction strength heterogeneity on the emergence of
community types. In order to achieve this, we chose the complete graph topology, i.e. each spe-
cies interacts with all other species. This eliminates any structural heterogeneity. The nominal
interaction strengths were taken from a normal distributionN ð0; 1Þ, the scaling component
was set to s = 0.7, and the interaction strength heterogeneity was varied from low heterogeneity

Fig 2. Impact of interaction strength heterogeneity on the distinctness of community types. A total of q = 500 local communities, each with p = 80
species randomly drawn from a universal pool of n = 100 species. The nominal components were drawn fromN ð0; 1Þ, the interaction heterogeneity matrix
elements were taken from PðaÞ and α is varied with the set of values {7, 3, 2, 1.6, 1.01} for each column in the figure. The topology componentG has all
elements equal to 1, giving a complete graph. The scaling factor was set at s = 0.07. (a) Histogram of the diagonal elements of the heterogeneity matrixH. (b)
Visualization of the universal interaction matrixA as a weighted adjacency matrix of a digraph. (c) Principle coordinate analyses of the normalized steady
state for each local community using the Jensen-Shannon distance. The Silhouette Index and optimal number of clusters are denoted. Further details can be
found in Materials and Methods.

doi:10.1371/journal.pcbi.1004688.g002
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(α = 7) to a high level of heterogeneity (α = 1.01). Fig 2 displays the distributions of the diago-
nal elements of the interaction heterogeneity matrixH at various heterogeneity levels. For each
level of heterogeneity we constructed 500 LCs, each with 80 species randomly drawn from a
metacommunity of 100 species. Fig 2b illustrates the global interaction matrix A as a weighted
network. With low heterogeneity all the link weights are of the same order of magnitude. As
the heterogeneity increases fewer nodes contain highly weighted links, until there is only one
node with highly weighted links when α = 1.01. These nodes with highly weighted links corre-
spond to SISs.

Fig 2c presents the results of Principle Coordinates Analysis (PCoA) of the steady states asso-
ciated with the 500 different LCs as a function of α. For low interaction heterogeneity (α = 7)
the classical clustering measure, Silhouette Index, is less than 0.1, suggesting a lack of clustering
in the data. As the heterogeneity increases the steady states can be seen to separate in the first
two principle coordinate axes. At one point (α = 2.0) three clusters is the optimal number of
clusters. Then as α continues to decrease the optimal number of clusters becomes two. The fact
that there are three clusters when α = 2.0 is not special, as a different number of optimal clus-
ters can be observed with different model parameters or different clustering measures (see S1
Text Sec. 7.2) [7]. While the precise number of clusters is not important here, what is important
is the fact that the degree of interaction strength heterogeneity controls the degree to which the
clusters appear to be distinct. For low levels of interaction strength heterogeneity the clusters
appear to be more like dense regions within a continuous gradient. As the heterogeneity
increases, the clusters become more distinct. Indeed, having two clusters for α = 1.01 is to be
expected, because one of the clusters is associated with all the LCs that contain the single SIS,
and the other LCs that do not contain the single SIS constitute the other cluster.

The overall trend observed in Fig 2c is unaffected if the complete graph is replaced by an
Erdős-Rényi (ER) random graph, or if the total number of LCs is increased (S1 and S2 Figs).
The result is also generally unaffected by the specifics of the nominal distribution (S1 Text Sec.
7.2.1), the mean degree of the ER graph (S1 Text Sec. 7.2.2), or the number of species in the
LCs (S1 Text Sec. 7.2.3). Of course, each LC can be invaded by other species that are currently
absent. If this migration occurs relatively fast, then all LCs will converge to roughly the same
species collection and the clustering will disappear. Hence in our modeling approach we have
to assume that the migration occurs at a relatively slow time scale, and the time interval
between species invasions is too long to disrupt the clustering. We also note that if heteroge-
neous interactions are placed at random in the network the clustering of steady states does not
arise (S3 Fig). Our results are also robust (in the control theoretical sense) to stochasticity and
the migration of existing species [43]. Robustness to migration is illustrated in S4 and S5 Figs,
and robustness to stochastic disturbances is illustrated in S6–S8 Figs (see S1 Text Sec. 4.4 for
analytical robustness results).

We can explain the above results as follows: for low interaction strength heterogeneity all of
the matrices A[ν] are very similar. In other words, despite containing different sets of species,
all the LCs have very similar dynamics. Thus, clustering of steady states is not to be expected.
As the heterogeneity of interaction strength increases, however, some of the LCs will have spe-
cies that are associated with the highly weighted columns in A, i.e. the SISs. Fig 3 presents a
detailed analysis of the most abundant (dominating) species in each of the three clusters (com-
munity types) in Fig 2c for α = 2 and α = 1.6, along with the abundances of the SISs within
each cluster. It is clear that for different clusters their dominating species are different, consis-
tent with the empirical finding that each enterotype is dominated by a different genus [6]. The
SISs that are present in each cluster also vary. For instance with α = 1.6 all LCs in the blue clus-
ter contain SISs number 23 and 81, and none have species 60 or 51. For the orange cluster it is
the opposite scenario. All of the LCs in the orange cluster contain SISs 60 and 51, and do not
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Fig 3. Comparison of dominating species to SISs in different community types (clusters). The relative abundances of the six most abundant species
from each of the three clusters in Fig 2c for α = 2 and α = 1.6 are compared to that of the four species with the largest interaction strengths (60, 23, 81, and
51).

doi:10.1371/journal.pcbi.1004688.g003
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contain species 23 or 81. Most of the LCs in the yellow cluster contain SISs 23 and 51. Hence,
each community type is well characterized by a unique combination of SISs. Note that none of
the SISs are dominating species. These findings, along with the analysis in Fig 1, suggest that
heterogeneity in interaction strengths or the presence of SISs leads to the clustering of steady
states, i.e. the emergence of community types.

We then studied the impact of structural heterogeneity on community types. Four different
scenarios are illustrated in Fig 4: (a) a complete graph topology as in Fig 2; (b) an ER random
graph as in S1 Fig; (c) a power-law out-degree network; (d) a power-law out-degree network
with no interaction strength heterogeneity. Fig 4a, 4b and 4c support the main result shown in
Fig 2, i.e. increasing interaction strength heterogeneity leads to the emergence of distinct com-
munity types. Fig 4d displays rather unexpected results as it suggests that structural heteroge-
neity alone does not lead to distinct community types. It is only with the inclusion of
interaction strength heterogeneity that structurally heterogeneous microbial ecosystems can
display strong clustering in their steady states as shown in Fig 4c. This result is rather surpris-
ing, because structural heterogeneity is observed in many real-world complex networks [44–
46] and has been shown to affect many dynamical processes over complex networks [47–49].

Note that in the preparation of Fig 4 the steady state abundances were normalized to get rel-
ative abundances of the species and the Jensen-Shannon distance metric was used for clustering
analysis [50]. The trends discussed above also hold when, instead of the Silhouette Index, the
Variance Ratio Criterion is used as the clustering measure, or the Euclidean distance is used for

Fig 4. Impact of network structure on the distinctness of community types. For each type of network structure 10 different Universal Triples (S, A, r)
with n = 100 species and q = 500 local communities of size p = 80 were generated with results shown in the lighter color and averaged results shown in bold.
(a) Complete graph. Same study as in Fig 2 with α 2 [5, 1). (b) Erdős-Rényi network (digraph) ½N�ij � N ð0;1Þ, ½H�ii � PðaÞ where α 2 (1, 5], Probability [G]ij = 1

is 0.1, i.e. a mean in(out)-degree of 10, and scaling factor s ¼ 1=
ffiffiffiffiffiffi
10

p
. (c) Power-law out-degree network ½N�ij � N ð0; 1Þ, ½H�ii � PðaÞ,G is the adjacency

matrix for a digraph with out-degree having a power-law distribution PðaÞ. The high-degree nodes have the largest interaction scaling. (d) Power-law out-
degree network, no interactions strength heterogeneity ½N�ij � N ð0;1Þ, H is the identity matrix,G is the adjacency matrix for a digraph with out-degree having
a distribution PðaÞ. Further details can be found in Materials and Methods.

doi:10.1371/journal.pcbi.1004688.g004
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clustering, or when absolute abundances are analyzed along with the Euclidean distance being
used (S9, S10 and S11 Figs). S11 Fig correlates to the analytical results in Fig 1, where absolute
abundances and the Euclidean distance are implicitly used.

Control of Community Types
With the knowledge that each community type can be associated with a specific collection of
SISs, we tested the hypothesis that a local community could be steered to a desired community
type by controlling the combination of SISs only. Our results for three different scenarios are
shown in Fig 5a for α = 1.6. The local community that was controlled in each scenario is shown
in magenta and is denoted LC�, which initially belongs to the blue cluster. For Scenario 1, LC�

had the SISs 23 and 81 removed, with species 60 and 51 simultaneously introduced with ran-
dom initial abundances drawn from Uð0; 1Þ. Recall that species 60 and 51 are the SISs present
in the orange cluster. This swap of SISs shifts LC� to a slightly different state (green dot) within
the blue cluster. The GLV dynamics were then simulated and the trajectory goes from the blue
cluster to the orange cluster. This result was independent of the initial condition of species 60
and 51 (Fig 5b). This open-loop control of the community type by manipulating a set of SISs
also works at lower levels of heterogeneity (Fig 5c and 5d). Here we use the term open-loop to
contrast closed-loop control where inputs are designed with feedback so as to continuously
correct the system of interest. These findings imply that the SISs, despite their low abundances,
can be used to effectively control a microbial community to a desired community type.

In Scenario 2 we tested if the same result could be obtained by removing the six most abun-
dant species from LC� and introducing the six most abundant species from the orange cluster
at exactly the same abundance level as an arbitrary local community in the orange cluster. The
state after this dominating species swap (red dot) starts close to the orange cluster, because the
six most abundant species from a local community in that cluster were copied. The trajectory
does not ultimately converge near the orange cluster, but goes toward the blue cluster instead.
The trajectory, however, does not ultimately converge in the blue cluster because it does not
contain any of the most abundant species present in the blue cluster.

In scenario 3 we explored how the open-loop control methodology just presented could also
be used to conceptually justify the success of FMT in treating patients with rCDI [20–22]. This
scenario begins by removing 20 species from LC� (the top two SISs and 18 of the most abun-
dant spaces) so as to emulate the effect of broad-spectrum antibiotics, resulting in an altered
community (blue dot). Then the GLV dynamics were simulated and the local community con-
verged to a new steady state (black dot), representing the CDI state. To emulate an oral capsule
FMT 1% of the species abundances from an arbitrary LC in the orange cluster, i.e. the donor,
was added to the CDI state, resulting in a slightly altered community (gray dot). The GLV
dynamics were then simulated until the final steady state was reached (white dot). As expected
the post-FMT steady state is in the orange cluster, the same cluster that is associated with the
donor’s LC. Note that if during the FMT the SISs in the donor’s LC were not transplanted then
the patient’s post-FMT steady state does not converge in the orange cluster (S12 Fig).

The above results indicate that the presence of SISs simplifies the open-loop control design.
However, the existence of community types is not a prerequisite for deploying this control
methodology. The possibility for open-loop control of the human microbiome will likely be
body site specific. Our work focused on the gut specifically because of the fact that this micro-
bial community is very likely dominated by microbe-microbe and/or host-microbe interac-
tions, rather than external disturbances. It is yet to be determined what factors drive the
dynamics in other body sites.
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Fig 5. Open-loop control of the humanmicrobiome. (a) Background of clustering analysis for α = 1.6 from Fig 2, but with Euclidean distance used so that
a projection matrix could be found to show the trajectories in the 2D principle coordinate plane (S1 Text Sec. 5.6). We aim to steer a local community
(denoted as LC*, shown in magenta) in the blue cluster to the orange cluster. Three different scenarios are presented, per the three numbers above the
arrows. Scenario 1: SISs swap. The SISs (23 and 81) of LC* were replaced by the SISs present in the orange cluster (60 and 51). The initial abundances of
species 60 and 51 were drawn from Uð0; 1Þ, resulting in and altered community (green dot), and the GLV dynamics were simulated until the steady state was
reached (white dot), which is located in the orange cluster as desired. Scenario 2: Dominating Species (DS) swap. The six most abundant species in LC*
were removed and replaced by the six most abundant species from a local community in the orange cluster, with the initial condition after the switch of
species shown as the red dot, and the dynamics were simulated until steady state was reached (white dot). Scenario 3: Fecal Microbiota Transplantation
(FMT). The two SISs and 18 of the most abundant species (for a total of 20) were removed from LC* with the initial condition shown in blue (post-antibiotic
state). Then the GLV dynamics were simulated (gray line) and the system converged to the black dot (CDI state). Then 1% of the steady abundances from an
arbitrary LC in the orange cluster were added to the CDI state (gray dot, emulating oral capsule FMT) and the dynamics were then simulated until steady
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Discussion
In this work we studied compositional shift as a function of species collection using a dynamic
systems approach, aiming to offer a possible mechanism for the origins of community types.
We found that the presence of interaction strength heterogeneity or SISs is sufficient to explain
the emergence of community types in the human microbiome, independent of the topology of
the underlying ecological network. The presence of heterogeneity in the interspecific interac-
tion strengths in natural communities has been well studied in macroecology [23–25, 51].
Extensive studies are still required to explore this interesting direction in the human micro-
biome. While preliminary analysis is promising, all existing temporal metagenomic datasets
are simply not sufficiently rich to infer the interspecific interaction strengths among all of the
microbes present in and on our bodies [15] even at the genus level, let alone the species level.
Recent studies have tried to overcome this issue by only investigating the interactions between
the most abundant species [34]. Our results, however, suggest that SISs need not be the most
abundant ones and can still play an important role in shaping the steady states of microbial
ecosystems. Ignoring the lack of sufficient richness, system identification analysis with regulari-
zation and cross-validation [32, 52] of the largest temporal metagenomic dataset to date [39]
does not disprove the existence of SISs. To the contrary, it supports this assertion (see S13 Fig).
Permutation of the time series however also results in the identification of interaction strength
heterogeneity (see S14 and S15 Figs). Hence, the presence of SISs needs to be systematically
studied with novel system identification methods and perhaps further validated with co-culture
experiments [15]. For example, we could first use metabolic network models to predict levels of
competition and complementarity among species [53], which could then be used as prior infor-
mation to further improve system identification [54].

Note that our notion of SIS is fundamentally different from that of keystone species, which
are typically understood as species that have a disproportionately deleterious effect (relative to
their abundance) on the community upon their removal [55]. One can apply a brute-force
leave-one-out strategy to evaluate the “degree of keystoneness” of any species in a given com-
munity [56]. Even without any interaction strength heterogeneity, a given community may still
have a few keystone species. The SISs defined in this work are those species that have very
strong impacts (either positive or negative) on the species that they directly interact with. The
presence of SISs requires the presence of interaction strength heterogeneity. We emphasize
that an SIS is not necessarily a keystone species. In fact, without any special structure embed-
ded in the interaction matrix (and hence the ecological network), there is no reason why the
removal of any SIS would cause a mass extinction. It does have a profound impact on the
steady-state shift, which is exactly what we expected from our analytical results presented in
Fig 1.

Our findings also have important implications as we move forward with developing micro-
biome-based therapies, whether it be through drastic diet changes, FMT, drugs, or even engi-
neered microbes [57–63]. Indeed, our results suggest that a few strongly interacting microbes
can determine the steady state landscape of the whole microbial community. Therefore, it may
be possible to control the microbiome efficiently by controlling the collection of SISs present in
a patient’s gut. Finer control may be possible through the engineering of microbes. This will
involve a detailed mechanistic understanding of the metabolic pathways associated with the
microbes of interest. As discussed in Fig 1, given a new steady state of interest, the parameters

state was reached. (b) The SISs swap process was repeated ten times, each time the initial abundances of species 60 and 51 were randomly drawn from
Uð0; 1Þ. Nine of the simulations are shown in black and the simulation that pertains to Fig 4a is shown in maroon. (c) The same analysis as for Fig 5a, in terms
of SISs swap, but for α = 2. (d) The same analysis as for Fig 5a, in terms of SISs swap, but for α = 3.

doi:10.1371/journal.pcbi.1004688.g005

On the Origins and Control of Community Types in the Human Microbiome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004688 February 11, 2016 12 / 21



b, c, d, s could be chosen such that the new steady state is feasible and stable (S1 Text Sec.
4.3.1). Then, with the knowledge of the appropriate parameters b, c, d, s it would be possible to
introduce a known microbe with those characteristics or engineer one to have the desired prop-
erties. We emphasize that the stability and control of the microbial ecosystem must be studied
at the macroscopic scale using a systems and control theoretic approach. This is similar to
what is carried out in aerospace applications. The design of wings and control surfaces for an
aircraft incorporate sophisticated fluid dynamic models. The control algorithms for planes
however are often derived from simple linearized reduced order dynamic models where linear
control techniques can be easily deployed [64]. Taken together, our results indicate that the ori-
gins and control of community types in the human microbiome can be explored analytically if
we combine the tools of dynamic systems and control theory, opening new avenues to transla-
tional applications of the human microbiome.

Materials and Methods
The methods section begins with a toy example to illustrate the construction of the universal
interaction matrix A =NH ◦Gs in Eq (4), where

steps : ðiÞ N ¼

0 0:2 0:4 �0:1

0:7 0 0:3 0:4

�0:1 0:7 0 0:1

�0:3 �0:2 0:4 0

2
66666664

3
77777775

ðiiÞ H ¼

10 0 0 0

0 0:2 0 0

0 0 0:2 0

0 0 0 0:4

2
66666664

3
77777775

ðiiiÞ G ¼

0 1 1 1

1 0 1 0

1 0 0 0

0 0 1 0

2
66666664

3
77777775

ðivÞ s ¼ 1

ðvÞ ½A�ii ¼ �1

final result : A ¼

�1 0:04 0:08 �0:04

7 �1 0:06 0

�1 0 �1 0

0 0 0:08 �1

2
66666664

3
77777775

Given thatH is diagonal, it scales the columns ofN. If one thinks of A as the adjacency matrix
of a digraph, thenH scales all of the edges leaving a node. Thus one can considerH as control-
ling the interaction strength heterogeneity of A. Given the Hadamard product betweenH and
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G, the off-diagonal elements of G that are zero will result in the corresponding off-diagonal ele-
ments of A being zero as well.

In the first study (Fig 2), to explore the impact of interaction heterogeneity on steady state
shift, we varied the exponent −α of the power-law distribution of [H]ii to generate five different
universal interaction matrices A of dimension 100 × 100. For each universal interaction matrix
A, the nominal component N consists of independent and identically distributed elements
sampled from a normal distributionN ð0; 1Þ. The topology for this study was a complete graph
and thus all the elements in G are equal to 1. The heterogeneity elementH is constructed in

two steps. First, five different vectors �hðaÞ 2 R
100 are constructed where each element is sam-

pled from a power-law distribution PðaÞ for α 2 {7, 3, 1.6, 1.2, 1.01}. Then, each of the �hðaÞ is
normalized to have a mean of 1, h ¼ �h=meanð�hÞ: Finally the heterogeneity matrix is defined as
H ¼ diagðhÞ. For this study s = 0.07, ensuring uniform asymptotic stability for the case of low
heterogeneity (see S1 Text Theorem 17). The final step in the construction of A is to set the
diagonal elements to −1.

For each α the following simulation steps were taken. There are a total of 100 species,
S = {1, 2, . . ., 100}, in the metacommunity, and each of the 500 local communities contains 80
species, randomly chosen from S. The MATLAB command used to perform this step is rand-
perm. The initial condition for each of the 500 local communities, x[ν](0), were sampled from
Uð0; 1Þ. The dynamics were then simulated for 100 seconds using the MATLAB command
ode45. If any of the 500 simulations crashed due to instability or if the norm of the terminal
discrete time derivative was greater than 0.01 then that local community was excluded from
the rest of the study. Those simulations that finished without crashing and with small terminal
discrete time derivative were deemed steady. Less than 1% of simulations were deemed unsta-
ble in the preparation of Fig 2. It is worth noting that by constructing the dynamics as
described above the abundance profiles for our synthetic data do not contain the heavy-tailed
abundance profile that is observed in the HMP gut data [4].

The networks presented in the second row of Fig 2 were constructed by considering A as the
weighted adjacency matrix of the network. Note that arrows showing directionality and self
loops were suppressed. The links were color coded in proportion to the absolute value of the
entries in A.

For the last row of Fig 2 a clustering analysis was performed. For each α the steady state
abundances of the 500 local communities were normalized so that we have 500 synthetic
microbial samples. Then k-medoids clustering was performed for k 2 {1, 2, . . ., 10} using the
Jensen-Shannon distance metric (S1 Text Sec. 5.1). Silhouette analysis was performed to deter-
mine the optimal number of clusters and the clustering results were illustrated in the 2-dimen-
sional principle coordinates plot. For S1 Fig the same steps as for the preparation of Fig 2 were
performed, but with G representing the adjacency matrix of an Erdős-Rényi digraph with

mean degree of 20 (mean in-degree of 10 and mean out-degree of 10) and s ¼ 1=
ffiffiffiffiffi
10

p
. Details

on the construction of an Erdős-Rényi digraph can be found in S1 Text Section 3.2.1. For S2
Fig the same steps as above were performed in Fig 2 but with p = 5,000 local communities.

Fig 4 is a macroscopic analysis of how network structure plays a role in the steady state shift
with values of α 2 (1, 5]. For each topology ten different universal matrices A were generated.
Fig 4a shows the results of a complete graph and for each of the ten universal A the same steps
as in the preparation of Fig 2 were carried out. Fig 4b shoes the result of an Erdős-Rényi ran-
dom digraph topology and for each of the ten Amatrices the same steps as in the preparation
of S2 Fig were carried out. Fig 4c shows results for networks with a power-law out-degree dis-

tribution with a mean out-degree of 10, where the out-degree sequence uses the same �h in the
construction ofH. More information on the construction of G for a power-law out-degree
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network can be found in S1 Text Sec. 3.2.2. Fig 4d shows results for networks with a power-law
out-degree distribution with mean out-degree of 10 and there is no interaction strength hetero-
geneity, i.e.H is the identity matrix. For this study the Silhouette Index was constructed from
normalized steady state data using the Jensen-Shannon distance. S9 Fig is the same as Fig 4,
but instead of the Silhouette Index, the variance ratio criterion is used with the Jensen-Shannon
distance, from normalized steady state abundance (S1 Text Sec. 5.4). In S10 Fig the Silhouette
Index is determined from the Euclidean distance with normalized steady state abundance.
Finally, in S11 Fig the Silhouette Index is determined by the Euclidean norm with the absolute
steady state abundance.

Fig 5 contains a PCoA analysis of the results from Fig 2, but with the Euclidean distance
being used instead of the Jensen-Shannon distance, making PCoA equivalent to principle com-
ponent analysis. This enables us to project the open-loop control trajectories into the principle
coordinates (S1 Text Sec 5.6). This procedure was also used in the preparation of S12 Fig.

S13–S15 Figs contain system identification analyses for temporal gut microbiome data of
two subjects [39]. The data is publicly available from the metagenomics analysis server
MG-RAST:4457768.3-4459735.3 and can also be accessed (as we did) from Qiita (http://qiita.
ucsd.edu) under study ID 550. The processed data was downloaded as biom file “67_otu_table.
biom” (2014-11-17 13:18:50.591389). The Operational Taxonomic Units (OTUs) were then
grouped from the genus level and up, depending on the availability of known classifications for
OTUs, and converted to a txt file using MacQIIME version 1.9.0-20140227 with the command
summarize_taxa.py with the options -L 6 -a true. Data was collected over 445 days
with 336 fecal samples from Subject A and 131 fecal samples from Subject B. Details on the sys-
tem identification algorithm are now given. The dynamics in Eq (2) can be approximated in
discrete time as [32]

eiðkÞ þ log xiðtkþ1Þ
� �� log xiðtkÞð Þ ¼ ri þ

Xn

j¼1

aijxjðtkÞ ð5Þ

for i = 1, 2, . . ., n where k = 1, 2, . . ., N − 1 is the sample index, N is the total number of samples,
tk is the time stamp of sample k, and e is an error term that arises because of the assumption
that x(t) is constant over each interval t 2 [tk, tk+1). Eq (5) can be rewritten in terms of a regres-
sor vector

�ðkÞ ¼ ½1; x1ðtkÞ; x2ðtkÞ; . . . ; xnðtkÞ�T;

the parameter vector θi = [ri, ai1, ai2, . . ., ain] and the log difference yi(k) = log(xi(tk+1)) − log
(xi(tk)) as

eiðkÞ þ yiðkÞ ¼ yi�ðkÞ:

The identification problem can then be defined as finding the parameter matrix estimate

Ŷ ¼ ½ŷT
1 ; ŷ

T
2 ; � � � ; ŷT

n �T of the true parameter matrixY ¼ ½yT1 ; yT2 ; � � � ; yTn �T. Letting
yðkÞ ¼ ½y1ðkÞ; y2ðkÞ; . . . ; ynðkÞ�T

be the log difference vector for all species and Y = [y(1), y(2), . . ., y(N − 1)] be the log difference
matrix the system identification problem can be compactly presented as

min
Ŷ

kY � ŶFk2F þ lkŶk2

F

where F = [ϕ(1), ϕ(2), . . ., ϕ(N − 1)] is the regressor matrix, k�kF denotes the Frobenius norm,
λ	 0 is the Tikhonov regularization term [65]. The minimal solution to the above problem
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can be given directly as

arg min
Ŷ

ðkY � ŶFk2F þ lkŶk2FÞ ¼ YFTðFFT þ lIÞ�1

where I is the identity matrix.
Next we discuss how missing data, zero reads, and λ were chosen. The difference equation

in Eq (5) only uses sample data over two consecutive time samples. Therefore, in the construc-
tion of Y and F we only include samples that for which there is data from the next day as well.
Also, given that logarithms are used, when a sample has zero reads for a given taxa, a read
value of one is inserted. Then relative abundances are computed before the logarithm is taken.
Finally we discuss how the regularization parameter is chosen. For S13 and S14 Figs the follow-
ing cross-validation is performed. For Subjects A and B two-thirds of data was used for training
and one-third for testing. More precisely, for each λ two-thirds of the data from Subject A and
two-thirds of the data from Subject B were used to identify their corresponding dynamical con-
stants. Then the combined error from the two test sets was used to find the optimal λ. The reg-
ularization value used in S15 Fig is simply the same regularization value used in S13 Fig.

Supporting Information
S1 Fig. Impact of interaction strength heterogeneity on the distinctness of community
types. Same as Fig 2 but with the topology component G chosen to be an Erdős-Rényi digraph

with a link probability of 0.1 and the scaling factor was set at s ¼ 1=
ffiffiffiffiffi
10

p
.

(EPS)

S2 Fig. Impact of interaction strength heterogeneity on the distinctness of community
types. Same as Fig 2 but with p = 5,000 local communities. Note that it is rather counter-intui-
tive that for α = 1.01 the Silhouette Index suggests that there are two clusters, while PCoA sug-
gests three clusters. We emphasize that as a typical ordination method, the PCoA just produces
a spatial representation of the entities in the dataset, rather than the actual determination of
cluster membership. Note that as compared to Fig 2, because there are more samples in this fig-
ure, the distinctness of the clusters when α = 2 has shifted to more of a continuous gradient as
apposed to distinct clusters.
(EPS)

S3 Fig. Impact of interaction heterogeneity disbursed randomly throughout the network.
The set up is the same as that of Fig 2 but instead ofH being a diagonal matrix, it is a full
matrix, so that individual interactions are scaled randomly from a power-law distribution.
(EPS)

S4 Fig. Impact of low levels of migration. Same as Fig 2 but with a new term λ(t)2[0, 1]n
added to the dynamics so that now _x ¼ lþ diagðxÞðr þ AxÞ. In this example li � Uð0; 0:1Þ.
The disturbance is sampled every 0.01 seconds and held constant until the next sample is
taken.
(EPS)

S5 Fig. Impact of moderate levels of migration. Same as Fig 2 but with a new term λ(t)2
[0, 1]n added to the dynamics so that now _x ¼ lðtÞ þ diagðxÞðr þ AxÞ. In this example
li � Uð0; 1Þ. The disturbance is sampled every 0.01 seconds and held constant until the next
sample is taken.
(EPS)
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S6 Fig. Impact of small stochastic disturbance. Same as Fig 2 but with stochastic Itô dynamics
dx = diag(x)(r dt + Ax dt + c dw) where w is a n-dimensional Brownian motion and c repre-
sents the stochastic disturbance strength. Dynamics were simulated with a discrete time step of
0.01 seconds and c = 0.1.
(EPS)

S7 Fig. Impact of moderate stochastic disturbance. Same as Fig 2 but with stochastic Itô
dynamics dx = diag(x)(r dt + Ax dt + c dw) where w is a n-dimensional Brownian motion and
c represents the stochastic disturbance strength. Dynamics were simulated with a discrete time
step of 0.01 seconds and c = 0.5.
(EPS)

S8 Fig. Impact of large stochastic disturbance. Same as Fig 2 but with stochastic Itô dynamics
dx = diag(x)(r dt + Ax dt + c dw) where w is a n-dimensional Brownian motion and c repre-
sents the stochastic disturbance strength. Dynamics were simulated with a discrete time step of
0.01 seconds and c = 1.
(EPS)

S9 Fig. Impact of network structure on the distinctness of community types. The same as
Fig 4 with the Variance Ratio Criterion (VRC) used as apposed to the Silhouette Index for the
clustering measure. See S1 Text Sec. 5.4 for details on the VRC.
(EPS)

S10 Fig. Impact of network structure on the distinctness of community types. The same as
Fig 4 with the Euclidean distance metric used instead of the Jensen-Shannon distance metric.
(EPS)

S11 Fig. Impact of network structure on the distinctness of community types. The same as
Fig 4 with the Euclidean distance metric used instead of the Jensen-Shannon distance metric
and absolute abundance used instead of relative abundance.
(EPS)

S12 Fig. Unsuccessful fecal microbiota transplantation. Similar to Scenario 3 shown in Fig
5a, but during the FMT, the SISs (60 and 51) of the donor’s local community in the orange
cluster were not transplanted to the CDI state (black dot). This FMT resulted in a slightly
altered community (gray dot) and the system eventually evolved to a steady state (white dot)
thats is not in the orange cluster. Hence the FMT failed.
(EPS)

S13 Fig. System identification, Tikhonov regularization λ = 0.0423. System identification
was performed on the stool samples from the longitudinal data in [39] for two subjects as
described in S1 Text where λ was determined by cross-validation. (a) Visualization of microbial
taxa in terms of relative abundances versus day sample was taken. (b) Heat map of the interac-
tion matrix for top 100 SISs. (c) Histogram of Standard Deviation (SD) of the columns of the
interaction matrix. (d) List of top ten SISs in descending interaction strength (defined by the
SD of each column in the interaction matrix) with relative abundances over all samples shown
as a box plot. The banded structure shown in the heat map supports the assertion that SISs do
exist in the gut microbiome. However this banded structure is also seen when the dates of the
sample collections are permuted, see S14 and S15 Figs.
(EPS)

S14 Fig. System identification, day swap, Tikhonov regularization λ = 0.0057. System iden-
tification was performed on the stool samples from the longitudinal data in [39], but with the
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collection dates permuted, λ was determined by cross-validation on the permuted data. (a)
Visualization of microbial taxa in terms of relative abundances versus day sample was taken
(not permuted samples). (b) Heat map of the interaction matrix for top 100 SISs. (c) Histogram
of Standard Deviation (SD) of the columns of the interaction matrix. (d) List of top ten SISs in
descending interaction strength (defined by the SD of each column in the interaction matrix)
with relative abundances over all samples shown as a box plot. Even though the sample days
have been permuted the banded structure still persists.
(EPS)

S15 Fig. System identification, day swap, Tikhonov regularization λ = 0.0423. System iden-
tification was performed on the stool samples from the longitudinal data in [39], but with the
collection dates permuted, λ was selected to be the same as in S13 Fig. (a) Visualization of
microbial taxa in terms of relative abundances versus day sample was taken (not permuted
samples). (b) Heat map of the interaction matrix for top 100 SISs. (c) Histogram of Standard
Deviation (SD) of the columns of the interaction matrix. (d) List of top ten SISs in descending
interaction strength (defined by the SD of each column in the interaction matrix) with relative
abundances over all samples shown as a box plot. For the permuted data when λ is larger than
the optimal value from the cross-validation the identification method biases towards making
the most abundant species also the SISs.
(EPS)

S1 Text. Detailed treatment of necessary mathematical components. S1 Text contains dis-
cussions on: random variables, random matrices, dynamic stability, clustering, ordination,
modeling, and more simulation results.
(PDF)
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